Vibration Equation of Fractional Order Describing Viscoelasticity and Viscous Inertia
نویسندگان
چکیده
منابع مشابه
Discontinuous Galerkin Method for an Integro-differential Equation Modeling Dynamic Fractional Order Viscoelasticity
An integro-differential equation, modeling dynamic fractional order viscoelasticity, with a Mittag-Leffler type convolution kernel is considered. A discontinuous Galerkin method, based on piecewise constant polynomials is formulated for temporal semidiscretization of the problem. Stability estimates of the discrete problem are proved, that are used to prove optimal order a priori error estimate...
متن کاملThe Continuous Galerkin Method for an Integro-differential Equation Modeling Dynamic Fractional Order Viscoelasticity
We consider a fractional order integro-differential equation with a weakly singular convolution kernel. The equation with homogeneuos Dirichlet boundary conditions is reformulated as an abstract Cauchy problem, and well-posedness is verified in the context of linear semigroup theory. Then we formulate a continuous Galerkin method for the problem, and we prove stability estimates. These are then...
متن کاملAdaptive discretization of fractional order viscoelasticity using sparse time history
An efficient numerical method to integrate the constitutive response of fractional order viscoelasticity is developed. The method can handle variable time steps. To overcome the problem of the growing amount of data that has to be stored and used in each time step we introduce sparse quadrature. We use an internal variable formulation of the viscoelastic equations where the internal variable is...
متن کاملDiscretization of Integro-Differential Equations Modeling Dynamic Fractional Order Viscoelasticity
We study a dynamic model for viscoelastic materials based on a constitutive equation of fractional order. This results in an integrodifferential equation with a weakly singular convolution kernel. We discretize in the spatial variable by a standard Galerkin finite element method. We prove stability and regularity estimates which show how the convolution term introduces dissipation into the equa...
متن کاملApplication of fractional-order Bernoulli functions for solving fractional Riccati differential equation
In this paper, a new numerical method for solving the fractional Riccati differential equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon fractional-order Bernoulli functions approximations. First, the fractional-order Bernoulli functions and their properties are presented. Then, an operational matrix of fractional order integration...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Physics
سال: 2019
ISSN: 2391-5471
DOI: 10.1515/phys-2019-0088