Vibration Equation of Fractional Order Describing Viscoelasticity and Viscous Inertia

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous Galerkin Method for an Integro-differential Equation Modeling Dynamic Fractional Order Viscoelasticity

An integro-differential equation, modeling dynamic fractional order viscoelasticity, with a Mittag-Leffler type convolution kernel is considered. A discontinuous Galerkin method, based on piecewise constant polynomials is formulated for temporal semidiscretization of the problem. Stability estimates of the discrete problem are proved, that are used to prove optimal order a priori error estimate...

متن کامل

The Continuous Galerkin Method for an Integro-differential Equation Modeling Dynamic Fractional Order Viscoelasticity

We consider a fractional order integro-differential equation with a weakly singular convolution kernel. The equation with homogeneuos Dirichlet boundary conditions is reformulated as an abstract Cauchy problem, and well-posedness is verified in the context of linear semigroup theory. Then we formulate a continuous Galerkin method for the problem, and we prove stability estimates. These are then...

متن کامل

Adaptive discretization of fractional order viscoelasticity using sparse time history

An efficient numerical method to integrate the constitutive response of fractional order viscoelasticity is developed. The method can handle variable time steps. To overcome the problem of the growing amount of data that has to be stored and used in each time step we introduce sparse quadrature. We use an internal variable formulation of the viscoelastic equations where the internal variable is...

متن کامل

Discretization of Integro-Differential Equations Modeling Dynamic Fractional Order Viscoelasticity

We study a dynamic model for viscoelastic materials based on a constitutive equation of fractional order. This results in an integrodifferential equation with a weakly singular convolution kernel. We discretize in the spatial variable by a standard Galerkin finite element method. We prove stability and regularity estimates which show how the convolution term introduces dissipation into the equa...

متن کامل

Application of fractional-order Bernoulli functions for solving fractional Riccati differential equation

In this paper, a new numerical method for solving the fractional Riccati differential  equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon  fractional-order Bernoulli functions approximations. First, the  fractional-order Bernoulli functions and  their properties are  presented. Then, an operational matrix of fractional order integration...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Physics

سال: 2019

ISSN: 2391-5471

DOI: 10.1515/phys-2019-0088